Euler's method problems with solutions

Note: You might find it helpful to record your results in a table as you proceed through the calculations for each problem.

1. With a step size of $\Delta t = 0.2$, compute three steps of Euler's method to approximate the solution of y' = -0.3y starting with y = 25 for t = 1.

Solution:

Calculations are shown in the following table.

Step	t	y	$\Delta y = -0.3y\Delta t$
0	1	25	-0.3(25)(0.2) = -1.5
1	1 + 0.2 = 1.2	25 - 1.5 = 23.5	-0.3(23.5)(0.2) = -1.41
2	1.2 + 0.2 = 1.4	23.5 - 1.41 = 22.09	-0.3(22.09)(0.2) = -1.3254
3	1.2 + 0.2 = 1.6	22.09 - 1.3254 = 20.7646	

So, $y(1.6) \approx 20.76$.

2. With a step size of $\Delta x = 0.1$, compute three steps of Euler's method to approximate the solution of $y'(x) = e^{-x^2}$ starting with y(0) = 0.

Solution:

Calculations are shown in the following table.

Step	x	y	$\Delta y = e^{-x^2} \Delta x$
0	0	0	$e^{-0^2}(0.1) = 0.1$
1	0 + 0.1 = 0.1	0 + 0.1 = 0.1	$e^{-0.1^2}(0.1) = 0.099$
2	0.1 + 0.1 = 0.2	0.1 + 0.099 = 0.199	$e^{-0.2^2}(0.1) = 0.096$
3	0.2 + 0.1 = 0.3	0.199 + 0.096 = 0.295	

So, $y(0.3) \approx 0.295$.

3. With a step size of $\Delta t = 0.4$, compute three steps of Euler's method to approximate the solution of g'(t) = tg(t) starting with g(0) = 5.

Solution:

Calculations are shown in the following table.

Step	t	g	$\Delta g = tg\Delta t$
0	0	5	(0)(5)(0.4) = 0
1	0 + 0.4 = 0.4	5 + 0 = 5	(0.4)(5)(0.4) = 0.8
2	0.4 + 0.4 = 0.8	5 + 0.8 = 5.8	(0.8)(5.8)(0.4) = 1.856
3	0.8 + 0.4 = 1.2	5.8 + 1.856 = 7.656	

So, $g(1.2) \approx 7.656$.

4. With a step size of $\Delta t = 0.5$, compute ten steps of Euler's method to approximate the solution of R' = t - R starting with R = 3 for t = 0. Graph your computed points in a plot of R versus t.

Solution:

Calculations are shown in the following table.

Step	t	R	$\Delta R = (t - R)\Delta t$
0	0	3	(0-3)(0.5) = -1.5
1	0 + 0.5 = 0.5	3 - 1.5 = 1.5	(0.5 - 1.5)(0.5) = -0.5
2	0.5 + 0.5 = 1.0	1.5 - 0.5 = 1.0	(1.0 - 1.0)(0.5) = 0
3	1.0 + 0.5 = 1.5	1.0 + 0 = 1.0	(1.5 - 1.0)(0.5) = 0.25
4	1.5 + 0.5 = 2.0	1.0 + 0.25 = 1.25	(2.0 - 1.25)(0.5) = 0.375
5	2.0 + 0.5 = 2.5	1.25 + 0.375 = 1.625	(2.5 - 1.625)(0.5) = 0.4375
6	2.5 + 0.5 = 3.0	1.625 + 0.4375 = 2.0625	(3.0 - 2.0625)(0.5) = 0.46875
7	3.0 + 0.5 = 3.5	2.0625 + 0.46875 = 2.53125	(3.5 - 2.53125)(0.5) = 0.484375
8	3.5 + 0.5 = 4.0	2.53125 + 0.484375 = 3.015625	(4.0 - 3.015625)(0.5) = 0.4921875
9	4.0 + 0.5 = 4.5	3.015625 + 0.4921875 = 3.5078125	(4.5 - 3.5078125)(0.5) = 0.49609375
10	4.5 + 0.5 = 5.0	3.5078125 + 0.49609375 = 4.00390625	

A plot of these results is shown below.

